From Vedic Square to the Digital Root 'Clockworks' of Modulo 90 Factorization

"Vedic Mathematics is...a sophisticated pedagogic and research tool"

- Dr. L.M. Singhvi, former UK High Commissioner for India, from his forward to Cosmic Calculator, by Williams \& Gaskell

Mathematicians from India's ancient past are credited with inventing the 'Vedic Square' (pictured above). As anyone who has studied Vedic mathematics is aware, this deceptively simple multiplication matrix is a powerful analytical and computational tool.

The numbers in the table's column and row headings are cross-multiplied, and their products converted to their digital roots, distributed across 9^{2} cells. [Digital root (aka repeated digit sum, iterated sum-of-digits, or modulus 9 function) refers to the single digit (1-9) that results when all digit sums are summed in turn; this reflects the fact that any natural number is congruent modulo 9 to its digital root. For example: $89=8+9=17=1+7=8$, or $\operatorname{dr}(89)=8$.]

When it comes to The Digital Root, we completely agree with the importance attributed to it by Talal Ghannam, Ph.D. (in physics): "It was through my search for meaning that I discovered how important the digital root space is, which in return rewarded me with a look at how elegant and beautiful the world really is." from The Mystery of Numbers Revealed Through Their Digital Root.

In the color-coded matrix below we apply the Vedic Square concept to the period-24 digital root of natural numbers not divisible by 2 , 3 , or 5 -otherwise known as $\mathbf{n} \equiv\{\mathbf{1}, \mathbf{7}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 7}, \mathbf{1 9}, \mathbf{2 3}, \mathbf{2 9}\}$ modulo $\mathbf{3 0}$. We then expand the frame (x 3) to encompass $\mathbf{n} \equiv\{\mathbf{1}, \mathbf{7}$, $11,13,17,19,23,29,31,37,41,43,47,49,53,59,61,67,71,73,77,79,83,89\}$ modulo 90 . We'll call this sequence our 'domain.' This action synchronizes the modulus with its period-24 digital root, and - as we shall discover - creates an explosion of symmetries.

By definition, our domain consists of the number 1 and all prime numbers >5 and their multiplicative multiples. The matrix below colorfully exposes the perfect symmetry underpinning factorization of our domain at the digital root level. This object expands geometrically to infinity, and can be configured to spiral within a modulo 90 factorization wheel (ref: primesdemystified.com):

From Vedic Square to the Digital Root 'Clockworks’ of Modulo 90 Factorization

Given that by definition none of the elements in our defined domain are divisible by 3 , you'll find no 3 's, 6's, or 9's in its period- 24 digital root sequence, viz. $\{1,7,2,4,8,1,5,2,4,1,5,7,2,4,8,5,7,4,8,1,5,7,2,8\}$ \{repeat ...\}, comprised 4 each of numbers 1,2 , $4,5,7$, and 8 . This knowledge allows us to 'collapse' the Vedic Square, as pictured below (and we note that technically the subset $\{1$, $2,4,5,7,8\}$ forms a cyclic group of multiplicative units in the ring $\mathbb{Z} / 9 \mathbb{Z}$. .)

From our 'Vedic Square Light' matrix we can then extrapolate the 36 digital root dyads that drive factorization sequencing of composite numbers within our domain:

The 36 Fundamental Digital Root Multiplication Dyads
For all composite numbers congruent to $\{1,7,11,13,17,19,23,29\}$ modulo 30^{*}

Then, again employing the Vedic Square concept, we produce a sister matrix, albeit in her case we've converted the cross-multiplied products to their modulo 90 congruence rather than their digital roots (and note that the principal diagonal (highlighted in blue) sequences the squares, while the secondary diagonal (highlighted in pink) is comprised exclusively of prime numbers):

Modulo 9o Factorization Congruency

Period-24 Factorization Matrix for Composite Numbers Congruent to ... $\mathrm{n} \equiv\{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59,61,67,71,73,77,79,83,89\}$ modulo 90

From Vedic Square to the Digital Root 'Clockworks' of Modulo 90 Factorization

And the beauty of it is that from the matrix pictured above we can extrapolate 24 sets of $24=576$ modulo 90 factorization dyads that account for all composite numbers within our domain (and note that each set has perfect bilateral 90-sum symmetry):

From Vedic Square to the Digital Root 'Clockworks' of Modulo 90 Factorization

$\mathrm{n} \equiv\{477\} \operatorname{Mod} 90$	$n \equiv\{49\}$ Mod 90	$n \equiv\{53\} \operatorname{Mod} 90$	$n \equiv\{59\}$ Mod 90	$n \equiv\{61\} \operatorname{Mod} 90$	$n \equiv\{67\} \operatorname{Mod} 90$
$n \equiv\{1\} \times\{47\}$	$n \equiv\{1\} \times(49\}$	$n \equiv\{1\} \times(53)$	$n \equiv\{1\} \times(59)$	$n \equiv\{1\} \times\{61\}$	$n \equiv\{1\} \times(67)$
$n=\{7\} \times\{71\}$	$n=\{7\} \times\{7\}$	$n \equiv(7) \times(59)$	$n \equiv\{7\} \times\{47\}$	$n=\{7\} \times(73)$	$n=\{7\} \times(61\}$
$n \equiv\{11\} \times\{37\}$	$n \equiv\{11\} \times\{29\}$	$n \equiv\{11\} \times\{13\}$	$n \equiv\{11\} \times\{79\}$	$n \equiv\{11\} \times\{71\}$	$n \equiv\{11\} \times\{47\}$
$n \equiv\{13) \times(59\}$	$n \equiv(13) \times(73)$	$n \equiv\{13) \times(11\}$	$n \equiv\{13) \times\{53\}$	$n \equiv\{13\} \times\{67\}$	$n \equiv\{13\} \times(19\}$
$n \equiv\{17\} \times\{61\}$	$n \equiv\{17\} \times\{77\}$	$n \equiv\{17] \times$ (19)	$n \equiv\{17\} \times\{67\}$	$n \equiv\{17] \times\{83\}$	$n \equiv\{17] \times\{41\}$
$n \equiv\{19\} \times\{83\}$	$n \equiv\{19\} \times\{31\}$	$n \equiv\{19\} \times\{17\}$	$n \equiv\{19\} \times\{41\}$	$n \equiv\{19\} \times(79\}$	$n \equiv\{19\} \times(13)$
$n \equiv$ (23) \times (49\}	$n \equiv\{23\} \times\{53\}$	$n \equiv\{23) \times\{61\}$	$n \equiv\{23\} \times\{73\}$	$n \equiv\{23\} \times(77)$	$n \equiv\{23\} \times(89)$
$n \equiv\{29\} \times\{73\}$	$n \equiv\{29\} \times\{11\}$	$n \equiv\{29\} \times(67\}$	$n \equiv\{29\} \times$ (61\}	$n \equiv\{29\} \times$ (89)	$n \equiv\{29\} \times\{83\}$
$n \equiv\{31\} \times\{77\}$	$n \equiv\{31\} \times\{19\}$	$n \equiv\{31\} \times\{83\}$	$n \equiv\{31\} \times(89)$	$n \equiv\{31\} \times$ \{31\}	$n \equiv\{31\} \times\{37\}$
$n=\{37) \times\{11\}$	$\mathrm{n}=(37) \times(67)$	$n=(37) \times$ (89)	$n=\{37) \times(77)$	$n \pm\{37] \times(43)$	$n=(37) \times$ (31)
$n \equiv\{41\} \times\{67\}$	$n \equiv\{41\} \times\{89\}$	$n \equiv\{41\} \times\{43\}$	$n \equiv\{41\} \times\{19\}$	$n \equiv\{41\} \times\{41\}$	$n \equiv\{41\} \times\{17\}$
$n \equiv\{43\} \times\{89\}$	$n \equiv\{43\} \times\{43\}$	$n \equiv\{43\} \times\{41\}$	$n \equiv\{43\} \times(83)$	$n \equiv\{43\} \times(37)$	$n \equiv\{43\} \times\{79\}$
$n \equiv\{47) \times(1)$	$n \equiv(47) \times(47)$	$n \equiv(47) \times(49)$	$n \equiv\{47\} \times(7)$	$n \equiv(47) \times(53)$	$n \equiv\{47\} \times(11)$
$n \equiv\{49\} \times(23\}$	$n \equiv\{49\} \times\{1\}$	$n \equiv\{49\} \times\{47\}$	$n \equiv\{49\} \times\{71\}$	$n \equiv\{49\} \times\{49\}$	$n \equiv\{49\} \times\{73\}$
$n=(53) \times(79\}$	$n=(53) \times\{23\}$	$n=\{53\} \times(1)$	$n=\{53) \times(13)$	$n=\{53) \times(47)$	$n=(53) \times(59)$
$n \equiv\{59\} \times(13)$	$n \equiv\{59\} \times\{71\}$	$n \equiv\{59\} \times(7)$	$n \equiv$ (59) \times (1)	$n \equiv\{59\} \times\{59\}$	$n \equiv(59) \times(53)$
$n \equiv\{61\} \times\{17\}$	$n \equiv\{61\} \times\{79\}$	$n \equiv\{61\} \times\{23\}$	$n \equiv\{61\} \times\{29\}$	$n \equiv\{61\} \times\{1\}$	$n \equiv\{61\} \times\{7\}$
$n \equiv\{67\} \times(41\}$	$n \equiv\{67) \times(37)$	$n \equiv(67) \times(29)$	$n \equiv\{67\} \times(17\}$	$n \equiv\{67\} \times\{13\}$	$n \equiv\{67\} \times(1)$
$n \equiv\{71\} \times\{7\}$	$n \equiv\{71\} \times(59\}$	$n \equiv\{71\} \times\{73\}$	$n \equiv\{71\} \times$ 449\}	$n \equiv\{71\} \times\{11\}$	$n \equiv\{71\} \times\{77\}$
$n=\{73\} \times\{29\}$	$n=\{73\} \times\{13\}$	$n=\{73\} \times\{71\}$	$n=\{73\} \times\{23\}$	$n=\{73\} \times\{7\}$	$n=\{73\} \times\{49\}$
$n \equiv\{77) \times\{31\}$	$n \equiv\{77) \times(17\}$	$n \equiv\{77) \times(79)$	$n \equiv\{77\} \times\{37\}$	$n \equiv\{77\} \times\{23\}$	$n \equiv\{77\} \times\{71\}$
$n \equiv\{79\} \times(53)$	$n \equiv\{79\} \times(61\}$	$n \equiv\{79\} \times\{77\}$	$n \equiv\{79\} \times\{11\}$	$n \equiv\{79\} \times(19)$	$n \equiv\{79\} \times(43)$
$n \equiv\{83\} \times\{19\}$	$n \equiv\{83\} \times\{83\}$	$n \equiv\{83\} \times\{31\}$	$n \equiv\{83\} \times\{43\}$	$n \equiv\{83\} \times(17)$	$n \equiv\{83\} \times\{29\}$
$n \equiv\{89\} \times(43)$	$\mathrm{n} \equiv$ (89) \times ¢ 41$\}$	$n \equiv(89) \times(37)$	$n \equiv\{89) \times(31\}$	$n \equiv\{89\} \times\{29\}$	$n \equiv(89) \times\{23)$

$\mathrm{n} \equiv\{\mathbf{7 1}\} \operatorname{Mod} 90$	$\mathrm{n} \equiv\{\mathbf{7 3}\} \operatorname{Mod} 90$	$n \equiv\{77\}$ Mod 90	$\mathrm{n} \equiv\{\mathbf{7 9 \}}$ Mod 90	$\mathrm{n} \equiv\{83\} \operatorname{Mod} 90$	$n \equiv\{89\}$ Mod 90
$n \equiv\{1\} \times\{71\}$	$n \equiv\{1\} \times\{73\}$	$n \equiv\{1\} \times\{77\}$	$n \equiv\{1\} \times\{79\}$	$n \equiv\{1\} \times\{83\}$	$n \equiv\{1\} \times\{89\}$
$n \equiv\{7\} \times\{23\}$	$n \equiv\{7\} \times\{49\}$	$n \equiv\{7\} \times\{11\}$	$n \equiv\{7\} \times\{37\}$	$n \equiv$ (7) \times (89)	$n \equiv(7) \times(77)$
$n \equiv$ (11) \times (31)	$n \equiv\{11\} \times(23)$	$n \equiv(11) \times(7)$	$n \equiv\{11\} \times$ (89)	$n \equiv(11) \times\{73\}$	$n \equiv(11) \times$ (49)
$n \equiv\{13\} \times\{47\}$	$n \equiv\{13\} \times\{61\}$	$n \equiv\{13\} \times\{89\}$	$n \equiv\{13\} \times\{13\}$	$n \equiv\{13\} \times\{41\}$	$n \equiv\{13\} \times\{83\}$
$n \equiv\{17\} \times\{73\}$	$n \equiv\{17\} \times\{89\}$	$n \equiv\{17\} \times\{31\}$	$n \equiv\{17] \times\{47\}$	$n \equiv\{17] \times\{79\}$	$n \equiv\{17] \times$ (37)
$n \equiv(19) \times$ (89)	$n \equiv(19) \times\{37\}$	$n \equiv(19) \times\{23\}$	$n \equiv\{19\} \times\{61\}$	$n \equiv(19) \times(47)$	$n \equiv\{19) \times\{71\}$
$\mathrm{n} \equiv\{23\} \times\{7\}$	$n \equiv\{23\} \times\{11\}$	$n \equiv\{23\} \times\{19\}$	$n \equiv\{23\} \times\{23\}$	$n \equiv\{23\} \times\{31\}$	$n \equiv\{23\} \times\{43\}$
$n \equiv\{29\} \times$ (49)	$n \equiv\{29\} \times\{77\}$	$n \equiv\{29\} \times\{43\}$	$n \equiv\{29\} \times\{71\}$	$n \equiv\{29\} \times\{37\}$	$n \equiv\{29\} \times$ \{31\}
$n \equiv\{31\} \times\{11\}$	$n \equiv\{31\} \times\{43\}$	$n \equiv\{31) \times(17)$	$n \equiv\{31\} \times\{49\}$	$n \equiv\{31\} \times\{23\}$	$n \equiv\{31\} \times\{29\}$
$n \equiv\{37\} \times\{53\}$	$n \equiv\{37\} \times\{19\}$	$n \equiv\{37\} \times\{41\}$	$n \equiv\{37\} \times\{7\}$	$n \equiv\{37\} \times\{29\}$	$n \equiv\{37\} \times\{17\}$
$n=\{41\} \times\{61\}$	$n=\{41\} \times\{83\}$	$n=\{41\} \times\{37\}$	$n=\{41\} \times(59\}$	$n=\{41\} \times\{13\}$	$n=\{41\} \times\{79\}$
$n \equiv\{43\} \times\{77\}$	$n \equiv\{43\} \times\{31\}$	$n \equiv\{43\} \times\{29\}$	$n \equiv\{43\} \times\{73\}$	$n \equiv\{43\} \times\{71\}$	$n \equiv\{43\} \times\{23\}$
$n \equiv\{47\} \times\{13\}$	$n \equiv\{47\} \times\{59\}$	$n \equiv\{47\} \times\{61\}$	$n \equiv\{47\} \times\{17\}$	$\mathrm{n} \equiv\{47\} \times\{19\}$	$n \equiv\{47\} \times\{67\}$
$n=\{49\} \times\{29\}$	$n=\{49\} \times\{7\}$	$n=\{49\} \times(533$	$n=\{49\} \times\{31\}$	$n=\{49\} \times\{77\}$	$n=\{49\} \times\{11\}$
$n \equiv\{53\} \times\{37\}$	$n \equiv\{53\} \times\{71\}$	$n \equiv\{53\} \times\{49\}$	$n \equiv\{53\} \times\{83\}$	$n \equiv\{53\} \times\{61\}$	$n \equiv\{53\} \times\{73\}$
$n \equiv(59) \times\{79\}$	$n \equiv\{59\} \times\{47\}$	$n \equiv\{59\} \times\{73\}$	$n \equiv\{59\} \times\{41\}$	$n \equiv\{59\} \times\{67\}$	$n \equiv\{59\} \times\{61\}$
$n=\{61\} \times\{41\}$	$n=\{61\} \times\{13\}$	$n=\{61\} \times\{47\}$	$n \equiv\{61\} \times\{19\}$	$n \equiv\{61\} \times\{53\}$	$n=\{61\} \times\{59\}$
$n \equiv\{67\} \times\{83\}$	$n \equiv\{67\} \times\{79\}$	$n \equiv\{67\} \times\{71\}$	$n \equiv\{67\} \times\{67\}$	$n \equiv\{67\} \times\{59\}$	$n \equiv\{67\} \times\{47\}$
$n \equiv\{71\} \times\{1\}$	$n \equiv\{71\} \times\{53\}$	$n \equiv\{71\} \times\{67\}$	$n \equiv\{71\} \times\{29\}$	$n \equiv\{71\} \times\{43\}$	$n \equiv\{71\} \times\{19\}$
$n \equiv\{73\} \times\{17\}$	$n \equiv\{73\} \times\{1\}$	$n \equiv\{73\} \times\{59\}$	$n \equiv\{73\} \times\{43\}$	$n \equiv\{73\} \times\{11\}$	$n \equiv\{73) \times\{53\}$
$n \equiv\{77\} \times\{43\}$	$n \equiv\{77\} \times\{29\}$	$n \equiv\{77\} \times\{1\}$	$n \equiv\{77\} \times\{77\}$	$n \equiv\{77\} \times\{49\}$	$n \equiv\{77\} \times\{7\}$
$n \equiv\{79\} \times\{59\}$	$n \equiv\{79\} \times\{67\}$	$n \equiv\{79\} \times\{83\}$	$n \equiv\{79\} \times\{1\}$	$n \equiv\{79\} \times\{17\}$	$n \equiv\{79\} \times\{41\}$
$n \equiv\{83\} \times\{67\}$	$n \equiv\{83\} \times\{41\}$	$n \equiv\{83\} \times\{79\}$	$n \equiv\{83\} \times(53\}$	$n \equiv\{83\} \times\{1\}$	$n \equiv\{83\} \times\{13\}$
$\mathrm{n} \equiv$ (89) \times (19)	$n \equiv\{89\} \times\{17\}$	$\mathrm{n} \equiv(89) \times\{13\}$	$n \equiv$ (89) \times \{11\}	$\mathrm{n} \equiv(89\} \times\{7\}$	$n \equiv\{89\} \times\{1\}$

Lastly, we conjoin the 36 digital root operations of modulo 30 factorization with the 24×24 modulo 90 multiplication matrix to expose the beautiful 'clockworks' at the heart of factorization. The 576 dyads distribute evenly to 36 sets of 16:

The 24 Sets of $24=576$ Modulo 90 Factorization Dyads Organized by their Digital Roots ($\mathbf{3 6}$ sets of $16=576$)
for Composite Numbers Not Divisible by 2, 3, or 5 when framed:
$n \equiv\{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59,61,67,71,73,77,79,83,89\}$ Modulo 90.

Digital root $1 \times 1=1$		Digital root $1 \times 2=2$		Digital root $1 \times 4=4$		Digital root $1 \times 5=5$		Digital root $1 \times 7=7$		Digital root $1 \times 8=8$	
$\mathrm{n} \equiv 1(\bmod 90)$	$n \equiv 19(\bmod 90)$	$n \equiv 11(\bmod 90)$	$n \equiv 29(\bmod 90)$	$\mathrm{n} \equiv 13(\bmod 90)$	$n \equiv 31(\bmod 90)$	$n \equiv 23(\bmod 90)$	$n \equiv 41(\bmod 90)$	$\mathrm{n} \equiv 7(\bmod 90)$	$n \equiv 43(\bmod 90)$	$n \equiv 17(\bmod 90)$	$n \equiv 53(\bmod 90)$
1×1	1×19	1×11	1×29	1×13	1×31	1×23	1×41	1×7	1×43	1×17	1×53
19×19	19×1	19×29	19×11	19×67	19×49	19×77	19×59	19×43	19×7	19×53	19×17
37×73	37×37	37×83	37×47	37×49	37×13	37×59	37×23	37×61	37×79	37×71	37×89
73×37	73×73	73×47	73×83	73×31	73×67	73×41	73×77	73×79	73×61	73×89	73×71
$\mathrm{n} \equiv 37(\bmod 90) \mathrm{n} \equiv 73(\bmod 90)$		$\mathrm{n} \equiv 47(\bmod 90) \mathrm{n} \equiv 83(\bmod 90)$		$\mathrm{n} \equiv 49(\bmod 90) \mathrm{n} \equiv 67(\bmod 90)$		$n \equiv 59(\bmod 90) \mathrm{n} \equiv 77(\bmod 90)$		$\mathrm{n} \equiv 61(\bmod 90) \mathrm{n} \equiv 79(\bmod 90)$		$\mathrm{n} \equiv 71(\bmod 90) \mathrm{n} \equiv 89(\bmod 90)$	
1×37	1×73	1×47	1×83	1×49	1×67	1×59	1×77	1×61	1×79	1×71	1×89
19×73	19×37	19×83	19×47	19×31	19×13	19×41	19×23	19×79	19×61	19×89	19×71
37×1	37×19	37×11	37×29	37×67	37×31	37×77	37×41	37×43	37×7	37×53	37×17
73×19	73×1	73×29	73×11	73×13	73×49	73×23	73×59	73×7	73×43	73×17	73×53
Digital root $2 \times 1=2$		Digital root $2 \times 2=4$		Digital root $2 \times 4=8$		Digital root $2 \times 5=1$		Digital root $2 \times 7=5$		Digital root $2 \times 8=7$	
$\mathrm{n} \equiv 11(\bmod 90) \mathrm{n} \equiv 29(\bmod 90)$		$\mathrm{n} \equiv 13(\bmod 90) \mathrm{n} \equiv 31(\bmod 90)$		$n \equiv 17(\bmod 90) \quad \mathrm{n} \equiv 53(\bmod 90)$		$\mathrm{n} \equiv 1(\bmod 90) \quad \mathrm{n} \equiv 19(\bmod 90)$		$\mathrm{n} \equiv 23(\bmod 90) \quad \mathrm{n} \equiv 41(\bmod 90)$		$\mathrm{n} \equiv 7(\bmod 90) \quad \mathrm{n} \equiv 43(\bmod 90)$	
11×1	11×19	11×83	11×11	11×67	11×13	11×41	11×59	11×43	11×61	11×17	11×53
29×19	29×1	29×47	29×29	29×13	29×67	29×59	29×41	29×7	29×79	29×53	29×17
47×73	47×37	47×29	47×83	47×31	47×49	47×23	47×77	47×79	47×43	47×71	47×89
83×37	83×73	83×11	83×47	83×49	83×31	83×77	83×23	83×61	83×7	83×89	83×71
$n \equiv 47(\bmod 90) \mathrm{n} \equiv 83(\bmod 90)$		$\mathrm{n} \equiv 49(\bmod 90) \mathrm{n} \equiv 67(\bmod 90)$		$\mathrm{n} \equiv 71(\bmod 90) \mathrm{n} \equiv 89(\bmod 90)$		$n \equiv 37(\bmod 90) \mathrm{n} \equiv 73(\bmod 90)$		$\mathrm{n} \equiv 59(\bmod 90) \mathrm{n} \equiv 77(\bmod 90)$		$\mathrm{n} \equiv 61(\bmod 90) \mathrm{n} \equiv 79(\bmod 90)$	
11×37	11×73	11×29	11×47	11×31	11×49	11×77	11×23	11×79	11×7	11×71	11×89
29×73	29×37	29×11	29×83	29×49	29×31	29×23	29×77	29×61	29×43	29×89	29×71
47×1	47×19	47×47	47×11	47×13	47×67	47×41	47×59	47×7	47×61	47×53	47×17
83×19	83×1	83×83	83×29	83×67	83×13	83×59	83×41	83×43	83×79	83×17	83×53
Digital root $4 \times 1=4$		Digital root $4 \times 2=8$		Digital root $4 \times 4=7$		Digital root $4 \times 5=2$		Digital root $4 \times 7=1$		Digital root $4 \times 8=5$	
$n \equiv 13(\bmod 90) \mathrm{n} \equiv 31(\bmod 90)$		$\mathrm{n} \equiv 17(\bmod 90) \mathrm{n} \equiv 53(\bmod 90)$		$\mathrm{n} \equiv 7(\bmod 90) \quad \mathrm{n} \equiv 43(\bmod 90)$		$\mathrm{n} \equiv 11(\bmod 90) \mathrm{n} \equiv 29(\bmod 90)$		$\mathrm{n} \equiv 1(\bmod 90) \quad \mathrm{n} \equiv 19(\bmod 90)$		$n \equiv 23(\bmod 90) \mathrm{n} \equiv 41(\bmod 90)$	
13×1	13×37	$13 \times 29$$31 \times 47$	13×11	13×49	13×31	13×77	13×23	13×7	13×43	13×71	13×17
31×73	31×1		31×83	31×67	31×13	31×41	31×59	31×61	31×79	31×53	31×71
49×37	49×19	$\begin{aligned} & 31 \times 47 \\ & 49 \times 83 \end{aligned}$	49×47	49×13	49×67	49×59	49×41	49×79	49×61	49×17	49×89
67×19	67×73	67×11	67×29	67×31	67×49	67×23	67×77	67×43	67×7	67×89	67×53
$n \equiv 49(\bmod 90) \quad \mathrm{n} \equiv 67(\bmod 90)$		$n \equiv 71(\bmod 90) \mathrm{n} \equiv 89(\bmod 90)$		$\mathrm{n} \equiv 61(\bmod 90) \mathrm{n} \equiv 79(\bmod 90)$		$n \equiv 47(\bmod 90) n \equiv 83(\bmod 90)$		$\mathrm{n} \equiv 37(\bmod 90) \mathrm{n} \equiv 73(\bmod 90)$		$\mathrm{n} \equiv 59(\bmod 90) \mathrm{n} \equiv 77(\bmod 90)$	
13×73	13×19	13×47	13×83	13×67	13×13	13×59	13×41	13×79	13×61	13×53	13×89
31×19	31×37	31×11	31×29	31×31	31×49	31×77	31×23	31×7	31×43	31×89	31×17
49×1	49×73	49×29	49×11	49×49	49×31	49×23	49×77	49×43	49×7	49×71	49×53
67×37	67×1	67×83	67×47	67×13	67×67	67×41	67×59	67×61	67×79	67×17	67×71

Digital root $5 \times 1=5$	Digital root $5 \times 2=1$	Digital root $5 \times 4=2$	Digital root $5 \times 5=7$	Digital root $5 \times 7=8$	Digital root $5 \times 8=4$
$\mathrm{n} \equiv 23(\bmod 90) \mathrm{n} \equiv 41(\bmod 90)$	$\mathrm{n} \equiv 1(\bmod 90) \quad \mathrm{n} \equiv 19(\bmod 90)$	$\mathrm{n} \equiv 11(\bmod 90) \mathrm{n} \equiv 29(\bmod 90)$	$\mathrm{n} \equiv 7(\bmod 90) \quad \mathrm{n} \equiv 43(\bmod 90)$	$n \equiv 17(\bmod 90) n \equiv 53(\bmod 90)$	$\mathrm{n} \equiv 13(\bmod 90) \mathrm{n} \equiv 31(\bmod 90)$
$23 \times 1 \quad 23 \times 37$	$23 \times 47 \quad 23 \times 83$	$23 \times 67 \quad 23 \times 13$	$23 \times 59 \quad 23 \times 41$	$23 \times 79 \quad 23 \times 61$	23×71
$41 \times 73 \quad 41 \times 1$	$41 \times 11 \quad 41 \times 29$	$41 \times 31 \quad 41 \times 49$	$41 \times 77 \quad 41 \times 23$	$41 \times 7 \quad 41 \times 43$	$41 \times 53 \quad 41 \times 71$
$59 \times 37 \quad 59 \times 19$	$59 \times 29 \quad 59 \times 11$	$59 \times 49 \quad 59 \times 31$	59×23 59 577	$59 \times 43 \quad 59 \times 7$	$59 \times 17 \quad 59 \times 89$
$77 \times 19 \quad 77 \times 73$	$77 \times 83 \quad 77 \times 47$	$77 \times 13 \quad 77 \times 67$	$77 \times 41 \quad 77 \times 59$	$77 \times 61 \quad 77 \times 79$	$77 \times 89 \quad 77 \times 53$
$\mathrm{n} \equiv 59(\bmod 90) \mathrm{n} \equiv 77(\bmod 90)$	$n \equiv 37(\bmod 90) \mathrm{n} \equiv 73(\bmod 90)$	$\mathrm{n} \equiv 47(\bmod 90) \mathrm{n} \equiv 83(\bmod 90)$	$\mathrm{n} \equiv 61(\bmod 90) \mathrm{n} \equiv 79(\bmod 90)$	$\mathrm{n} \equiv 71(\bmod 90) \mathrm{n} \equiv 89(\bmod 90)$	$\mathrm{n} \equiv 49(\bmod 90) \mathrm{n} \equiv 67(\bmod 90)$
$23 \times 73 \quad 23 \times 19$	$23 \times 29 \quad 23 \times 11$	$23 \times 49 \quad 23 \times 31$	$23 \times 77 \quad 23 \times 23$	$23 \times 7 \quad 23 \times 43$	$23 \times 53 \quad 23 \times 89$
41×19 41×37	$41 \times 47 \quad 41 \times 83$	41×67 41×13	4141×59	$\times 61 \quad 41 \times 79$	8941×17
59×1	$59 \times 83 \quad 59 \times 47$	$\times 13$ 59x67	59×59 59 41	59×79 59 61	59×71
$77 \times 37 \quad 77 \times 1$	$77 \times 11 \quad 77 \times 29$	$77 \times 31 \quad 77 \times 49$	$77 \times 23 \quad 77 \times 77$	$77 \times 43 \quad 77 \times 7$	$77 \times 17 \quad 77 \times 71$
Digital root $7 \times 1=7$	Digital root $7 \times 2=5$	Digital root $7 \times 4=1$	Digital root $7 \times 5=8$	Digital root $7 \times 7=4$	Digital root $7 \times 8=2$
$\mathrm{n} \equiv 7(\bmod 90) \quad \mathrm{n} \equiv 43(\bmod 90)$	$n \equiv 23(\bmod 90) n \equiv 41(\bmod 90)$	$n \equiv 1(\bmod 90) \quad \mathrm{n} \equiv 19(\bmod 90)$	$n \equiv 17(\bmod 90) n \equiv 53(\bmod 90)$	$\mathrm{n} \equiv 13(\bmod 90) \mathrm{n} \equiv 31(\bmod 90)$	$\mathrm{n} \equiv 11(\bmod 90) \mathrm{n} \equiv 29(\bmod 90)$
$7 \times 1 \quad 7 \times 19$	$7 \times 29 \quad 7 \times 83$	$7 \times 13 \quad 7 \times 67$	$7 \times 41 \quad 7 \times 59$	$7 \times 79 \quad 7 \times 43$	$7 \times 53 \quad 7 \times 17$
$43 \times 19 \quad 43 \times 1$	$43 \times 11 \quad 43 \times 47$	$43 \times 67 \quad 43 \times 13$	$43 \times 59 \quad 43 \times 41$	43×61	$43 \times 89 \quad 43 \times 53$
61×37 61×73	61×83 61×11	$61 \times 31 \quad 61 \times 49$	61×77 61×23	$61 \times 43 \quad 61 \times 61$	$61 \times 17 \quad 61 \times 89$
79×73 79x 37	$79 \times 47 \quad 79 \times 29$	79×49 79x 31	79×23 79x77	79×7 79x79	$79 \times 53 \quad 79 \times 71$
$\mathrm{n} \equiv 61(\bmod 90) \mathrm{n} \equiv 79(\bmod 90)$	$\mathrm{n} \equiv 59(\bmod 90) \mathrm{n} \equiv 77(\bmod 90)$	$\mathrm{n} \equiv 37(\bmod 90) \mathrm{n} \equiv 73(\bmod 90)$	$\mathrm{n} \equiv 71(\bmod 90) \mathrm{n} \equiv 89(\bmod 90)$	$\mathrm{n} \equiv 49(\bmod 90) \mathrm{n} \equiv 67(\bmod 90)$	$\mathrm{n} \equiv 47(\bmod 90) \mathrm{n} \equiv 83(\bmod 90)$
$7 \times 23 \quad 7 \times 37$	$7 \times 47 \quad 7 \times 11$	$7 \times 31 \quad 7 \times 49$	$7 \times 23 \quad 7 \times 77$	$7 \times 7 \quad 7 \times 61$	$7 \times 71 \quad 7 \times 89$
$43 \times 37 \quad 43 \times 73$	29	31	7743×23	$\times 43 \quad 43 \times 79$	$\times 89$ 43x71
61×1	$\times 29$ 61x	$\times 67$ 61×13	61×59	1x79 61×7	$\times 17 \quad 61 \times 53$
$79 \times 19 \quad 79 \times 1$	$79 \times 11 \quad 79 \times 83$	$79 \times 13 \quad 79 \times 67$	$79 \times 59 \quad 79 \times 41$	79×61	$79 \times 53 \quad 79 \times 17$
Digital root $8 \times 1=8$	Digital root $8 \times 2=7$	Digital root $8 \times 4=5$	Digital root $8 \times 5=4$	Digital root $8 \times 7=2$	Digital root $8 \times 8=1$
$\mathrm{n} \equiv 17(\bmod 90) \mathrm{n} \equiv 53(\bmod 90)$	$n \equiv 7(\bmod 90) \quad \mathrm{n} \equiv 43(\bmod 90)$	$\mathrm{n} \equiv 23(\bmod 90) \mathrm{n} \equiv 41(\bmod 90)$	$n \equiv 13(\bmod 90) \mathrm{n} \equiv 31(\bmod 90)$	$n \equiv 11(\bmod 90) \quad \mathrm{n} \equiv 29(\bmod 90)$	$\mathrm{n} \equiv 1(\bmod 90) \quad \mathrm{n} \equiv 19(\bmod 90)$
17×1	$17 \times 11 \quad 17 \times 29$	$17 \times 49 \quad 17 \times 13$	17×59 17 173	17×43 17×7	17×53 17 17
$53 \times 19 \quad 53 \times 1$	$\times 29$	$\times 3153 \times 67$	$\times 41$	$\times 753 \times 43$	$\times 17 \quad 53 \times 53$
71×37 71×73	71×47 71×83	71×13 71×31	$71 \times 23 \quad 71 \times 41$	71×61	71×71
89×73 89 37	$89 \times 83 \quad 89 \times 47$	$89 \times 67 \quad 89 \times 49$	$89 \times 7789 \times 59$	89×79 89 x 61	89×89 89×71
$\mathrm{n} \equiv 71(\bmod 90) \mathrm{n} \equiv 89(\bmod 90)$	$\mathrm{n} \equiv 61(\bmod 90) \mathrm{n} \equiv 79(\bmod 90)$	$\mathrm{n} \equiv 59(\bmod 90) \mathrm{n} \equiv 77(\bmod 90)$	$n \equiv 49(\bmod 90) \quad \mathrm{n} \equiv 67(\bmod 90)$	$\mathrm{n} \equiv 47(\bmod 90) \mathrm{n} \equiv 83(\bmod 90)$	$\mathrm{n} \equiv 37(\bmod 90) \mathrm{n} \equiv 73(\bmod 90)$
17×73 17×37	$17 \times 83 \quad 17 \times 47$	17×67 17x 31	17×77 17x41	17×61	17×71
$53 \times 37 \quad 53 \times 73$	$53 \times 47 \quad 53 \times 83$	$53 \times 13 \quad 53 \times 49$	$53 \times 23 \quad 53 \times 59$	$53 \times 79 \quad 53 \times 61$	$53 \times 89 \quad 53 \times 71$
71×1	$71 \times 11 \quad 71 \times 29$	$71 \times 49 \quad 71 \times 67$	71×59 71×77	$71 \times 7 \quad 71 \times 43$	$71 \times 17 \quad 71 \times 53$
$89 \times 1989 \times 1$	$89 \times 2989 \times 11$	89×31	$89 \times 41 \quad 89 \times 23$	$89 \times 43 \quad 89 \times 7$	$89 \times 53 \quad 89 \times 17$

From Vedic Square to the Digital Root 'Clockworks' of Modulo 90 Factorization

These digital root and modulo 90 dyadic patterns expose the profoundly beautiful symmetries and 'initial conditions' that ultimately determine the distribution of all prime numbers >5.

And if you're asking, "How do you account for the first three primes: 2, 3, and 5?" The simple answer is that they and their primorial, 30 , determine the structure within which factorization algorithms operate. Nor have 3,6 , and 9 disappeared from the scene: They are also present structurally as the digital root of modulo $30,60,90$ cycles, and perhaps more profoundly in the form of rotating symmetry groups: equilateral triangles with vertices $\{1,4,7\}$ and $\{2,5,8\}$ that combinatorially rotate the vertices of equilateral triangle $\{3,6,9\}$, while the "trinity of triangles" rotate within a $9 / 3$ star polygon in 24 period- 24 cycles. $24^{2}=576$.)

Regardless, the beating heart at the center of these patterns is the Vedic Square.
Go figure.
The Guerrilla Arithmetician
primesdemystified.com

This work is licensed by its author, Gary William Croft, under a Creative Commons Attribute Share-Alike 3.0 Unported License.

